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EFFECTS OF A MASK ON THE TEMPERATURES
OF SUBSTRATES AND FILMS

G. B. Dinzburg UDC 536.241

A film is deposited on a substrate under vacuum via a mask [1], whose temperature is raised on account
of the thermal radiation from the crucible, while it is cooled by emission. The mask thus affects the temper-
ature distribution in the substrate and film.

The mask is made from ceramic, while the holder is made of bronze. The temperature of the mask
may be derived from formula (I) of [1]. The holder is not heated in the above way, since it is covered by the
mask and the substrate. Heat transfer occurs between thé mask, substrate, and mount. The temperature of
the substrate is given by
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where @ is in °C. Also, the temperatures of the film and substrate are affected by the side temperature of
the mask, particularly the part directly adjoining the film. This contribution can be determined from the heat-
balance equation. The final temperature of substrate and film is given by
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If the substrate is not metallic but an insulator (in the present case glass), then
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NOTATION

cgg, Cpmp, cgmy, thermal capacities of substrate, holder, and film; tg, substrate temperature; A,
Ag. thermal conductivities of mask and substrate; 7, radiation emission time; ®j, substrate temperature meg-
lecting effect of mask); @y, temperature of mask at end of deposition; §, 0g, thicknesses of mask and sub~
strate; 6;, thickness of mask relative to film; Sg, S;, S;, areas of substrate, mask, and lateral surface of
mask.
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STEADY-STATE RADIATION FIELD:
REPRESENTATION BY PROJECTION

V. A. Vorob'ev, O. V. Filonin, UDC 621.384.668
and P. A. Lavrinovich

Many physical experiments involve measuring the spatial characteristics of radiation fields; shadow
images are frequently employed for the purpose, but they are not always convenient and sometimes require
additional interpretation and processing, particularly if quantitative data are required.

We have developed a method and equipment for representing data on the spatial characteristics of radia-
tion fields as three~-dimensional (projection) images on the plane of a display unit. The method is based on al-
gorithms that relate the spatial parameters of an object to the image in projection. For instance, the follow-
ing algorithm can be used for the radiation flux from a point source:
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where F is focal distance; ¢,, ¢,, @5 are parameters that define the setting of the image; y; and v, are param-
eters that define the perspective; Y and X are the vertical and horizontal components of the projection image;
and f is the distance from the object to the recording plane.

No matter what the orientation of the object in real space, this algorithm allows one to specify readily
any convenient point of view by varying ¢,, ¢,, and ¢;. Analogous algorithms can be derived for various param-
eters under detailed experimental conditions,

This method has been realized in equipment for examining the spatial distribution of the x rays from
a betatron; the equipment consists of a scanning system, a data-processing unit, and a display. The data are
captured by scintillation counters arranged in lines in a plane of size 30 X 40 cm, The data-processing unit
realizes an algorithm of the type of (1). The resulting images are extremely clear and differ from shadow
images in allowing one to directly determine quantities such as the radiation intensity at any point in the scan.

The method can also be used in examining temperature distributions, in flaw detection, and so on.

Dep. 610-76, December 15, 1975.
Original article submitted May 29, 1974.

RADIANT HEAT TRANSFER IN POWDERED
MATERIALS AT HIGH TEMPERATURES

I. I. Vishnevskii, D. B. Glushkova, UDC 536.21:62.492.2
S. Ya. Tsypin, and A. S. Yutina

We have investigated the thermal conductivity of mineral powders with a dispersion from 0.1 to more
than 15 mm used in metallurgy, construction, and the refractory industry (Table 1). The thermal conduc-~
tivity was determined in the 100-1100°C range by measurements of steady-state radial heat flow. The exper-
imental results show a rapid increase of the effective thermal conductivity with temperature.
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TABLE 1. Characteristics of Powders Investigated

| Fractional composition, % Bulk | Megf=hetBI®
Material i >15 | 15-8 | 88 |3-0,5| <0,5 | demsity,| A, | Bezgll
mm | mm | mm | mm | mm | kg/m® | W/m°KW/m. k4
{
Concrete — ] =110 -] - 620 0,193 3,87
The .same - — i i — - —_ 580 0,203 - 5,83
The same 100 _— 1 — — — 520 0,253 8,50
Schungizite gravel 5] 8 15 - | = 510 0,211 5,53
Chamotte lightweight 50 40 10 — —_ 330 0,227 6,02
Vermiculite; — 15 30 40 153 1 290 0,114 3,29
Pearlite — _ ) - — 100 | 60 0,080 0,93
Pearlite—graphite - - | - — ] 100 220 0,060 1,19
mixture i
Ash—graphite mixture - = P 1 — 1100 | 760 0,142 1,04

| 1 i i !
Assuming the additivity of heat fluxes in heat transfer in disperse systems, the effective thermal con-
ductivity is
}Leff = xs - Ag+ Acon - 7'rad‘ @

Here the ferms take account, respectively, of the amount of heat transferred through the solid phase, through
the gas in the pores, by convection, and by radiation. A detailed consideration shows that the temperature
dependence of the first three terms is hardly stronger than linear.

Radiative heat transfer makes the largest contribution to the temperature dependence. Since Ap,q ~ T3,
Aeff B A + BT3, which is confirmed by the linearization of the relation obtained in appropriate coordinates.
The parameters Ay and 3 are listed in Table 1.

In the 200-1100°C range the fraction of the heat transfer contributed by radiation increases approxima-
tely from 20 to 90% for coarse-grained (d ~ 10 mm) powders and from 10 to 70% for fine-grained (d ~ 0.1 mm)
powders. At lower temperatures the thermal conductivity of coarse-grained powders is practically indepen-
dent of the size of the particles and the kind of material.

For concrete powders of various granular structure there is semiquantitative agreement with the Chud-
novskii—Kaganov formula

f = 2¢%h, @)

where ¢ is the emissivity of the surface of a grain, o is the Stefan—Boltzmann constant, and h is the diameter

of the pores.

Dep. 613-76, February 9, 1976.
Ukrainian Scientific-Research Institute of Refractories.

Original article submitted October 23, 1975.

THEORY OF GALVANOTHERMOMAGNETIC
REFRIGERATORS OF LONGITUDINAL TYPE

V. G. Okhrem and A. G. Samoilovich UDC 621.382.53

The existing theory of such devices (thermobhatteries and refrigeration units) is most fully presented
in [1], where all the major steady-state working characteristics are presented. A major disadvantage of this
theory is that it neglects (without justification) the effect of magnetic-field reversal on the thermo-emf.

The field-reversal effect means that oj(H) = «j(—H), and this alters the characteristics of such a re-
frigeration unit. The expression for the temperature difference shows that some previously unknown types
of cooling unit can thus exist.

1. A reversal cooler. This unit utilizes simply the change in sign of the thermo-emf on reversing the
magnetic field, and this change can be attained if one half of the specimen is placed in a magnetic field of one
polarity and the other half in the field of the opposite polarity, i.e., a; =—ay; =a, by =b, =b, ®y =%, =%,
oy(—H) =ap(—H), ay(—H) = oy (H).
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Experiment shows that such a device can exist; the material for the branches was a bismuth single
crystal having the following orientation: the axis of the specimen deviated by 10° from the binary axis and by
80° from the bisector axis in the binary-bisector plane. The experiments were performed under vacuum with
H=10T, T =77°K; under these conditions, p =10"° Q-m, »n =10 W/m °K,l oy (H)—a,(H) | = 400 uV/°K, A paral-
lelepiped of this orientation was prepared from the bismuth single crystal, and this was then cut into halves,
with one half turned through 180° relative to the other, the ends being then joined together with Wood's metal.

The result was a temperature difference of about 1°K, which agrees well with that predicted by the
theory. This cooler has certain advantages: first, both of the branches are made of the same material,
which is important; secondly, it works at low temperatures, because the reversal effect is most prominent
precisely in that temperature range [2]; and, thirdly, the quality factor is determined by the strength of the
magnetic field.

2. The branches in the cooler have identical reversal parameters: a; =a, =a; then the temperature
difference may be increased, since this parameter is not zero.

3. @ the current is sufficiently large and in the range

#yl=2 i< ay (H) — oy (]3’_)_ T,
oy (~H)—ay (H) ~ ol

the temperature difference is linearly dependent on the current.

NOTATION

ai=J([oj(—H)—aj(H)]/n), reversal parameter; b; = piJ ®/wi, parameter characterizing the Joule heat;
i =1 or 2, numbers of the cooler branches; J, current density; H, magnetic-field strength;! , branch length;
T; . thermostat temperature; oj(H), pi, %j, thermo~emf, specific resistance, and thermal conductivity of
branchi.
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THE OPTIMUM FIN PARAMETERS FOR A SURFACE
COOLED BY A BOILING LIQUID

M. K. Bezrodnyi and V. I. Sosnovskii UDC 536.242:536.423.1

A cylindrical shell has vertical rectangular fins, and the optimum parameters are derived from the
condition for providing maximum heat flux through the load-bearing surface of the ribbed wall under conditions
of bubble hoiling. The optimum values are determined for the rib thickness and rib separation on the basis of
heat-transfer and critical-flux relationships for the boiling of Freon-11 in the channels between the ribs.

The following expression is obtained for the critical heat flux density through the carrying surface on the
basis of heat balance:

_HUzd @)

The maximum desirable value for the height ! of a rib is derived by examining the performance factor for a
rectangular rib cooled by a boiling liquid; then I = 1.2w/?\6;7 2ay, and (1) becomes

121 i8p2a4 Hdy
Ter ™ dp+d

Focr - 2)
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The optimum value of 6y for a given d; is defined by chr/ 06y = 0; this gives
topt = do[ —3 (V dg + ¢y ==dp) ]’ ¢ : L2V A2e. (3)

The optimum value of d; is found by examining (2) and (3) together; the heat-transfer coefficient ¢ and the
critical heat flux g, at the base of a rib have been determined from studies on these quantities using models
for the channels between the ribs with uniform heat production in the walls. The measurements on these two
quantities have been used with (2) and (3) to derive graphs for the critical heat-flux density for a load-bearing
copper wall for various pressures and for various heights of the channels between ribs. It is found that the
optimum value for the gap dy, pt is in the range from 0.9 to 1.4 mm for pressures of F-11 between 1.0 and 4.6
bar, while the rib thickness 6r opt lies between 0.7 and 1.0 mm. The maximum heat-flux density at the load~
bearing surface then varies in the range from 6.0-10° to 8.0-10° W/m?.

Specimens of a klystron collector were made and tested in order to check the relationships; the critical
heat-flux density at the surface of the collector was taken as the value corresponding to the knee on the g =
f(At) curve, which corresponds to the onset of film boiling at the base of the ribs. The measurements agreed
satisfactorily with the calculation. The maximum heat-transfer capacity of a cylindrical shell with optimum
ribs exceeds by more than a factor of 4 the value of ¢y, for a smooth isothermal surface.

NOTATION

dops Qocrs heat-flux densities for the load-bearing surface of a ribbed wall and for the surface of a rib
at the base, respectively; a, heat-transfer coefficient at the foot of a rib; Z, rib height; d,, distance between
ribs; 64, rib thickness; A, thermal conductivity; E, rib performance factor.

Dep. 612-76, February 4, 1976,
Original article submitted October 7, 1975.

EFFECTS OF A THERMALLY INSULATED SECTION
ON FLOW IN A CHANNEL WITH COLD WALLS

M. D. Petrov and V. A. Sepp UDC 536.24.08

Measurements are reported for the flow structure in a cylindrical pipe withcoldwalls (Tw/T* =0.1),
in which there is a ceramic section of length I =D; the gas (air) was heated in a plasma source to T* = 3100~
3600°K, and the channel with D = 0.04 m was a direct continuation of the outer electrode of the plasma source,
as it consisted of two water-cooled metal tubes of length L = 8D each. The stagnation temperature T* and the
flow speed v were determined with a calorimetric probe having d = 0.003 m [1,2] for various points in the tube.

The distribution of T* and v at the outlet from the plasma source differ from those characteristic of
developed turbulent flow in a pipe (h = 1/7) in that the boundary layer was cooler, the core of the flow was
more highly elongated, and the maximum value of T* did not occur at the axis of the flow. In the absence of
the ceramic section, the distortion of the T* and v distributions terminated at the point x/D =8, where the
distributions for T* and v corresponded to the result for n =1/7.

The effect on the distribution of T* near the wall past the ceramic section was larger when the section
was placed at the start of the pipe, i.e., in the flow-stabilization region, and the maximum T* occurred at
the axis. The distortion of the T* distribution produced by this section in the stabilization path persisted
downstream for at least 3-4 times the diameter. Therefore, a short thermally insulated section can reduce
the thermal-stabilization length substantially. The T* distributions past a ceramic section were unaffected
within the error of measurement by the section if this was placed in the middle, i.e., where the flow had
stabilized, so the distribution corresponded to n = 1/7.

The distributions of v after the ceramic section in both cases deviated from the n = 1/7 form, although
the deviation in v near the wall past the section was reduced somewhat when the section was placed at the
start of a pipe. The reason is the increased roughness of the cold surface, since particles are deposited past
the ceramic section that arise from erosion of the ceramic, no matter whether this is placed inthe stabilization
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section or in the stabilized part, whereas the erosion products from the electrodes in the plasma source are
deposited on the surface before the point x/D =8.
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FREE CONVECTION ABOVE A HORIZONTAL PLATE

A. A. Pirozhenko UDC 536.253

The problem of free convection of a one-component gas above an isothermal horizontal plate is solved
in the boundary-layer approximation by the method of integral relations. Restricting ourselvestothird-degree
polynomials, and {aking account of the boundary conditions, we obtain for the flow velocity of the gas vy and
the enthalpy h
te=U; Gl —n? $=% (1—mn)? 3§ =—:; -5
n’ Ul

M=o

e AQ

The method of integral relations enables one to obtain analytical expressions for the unknowns U (£) and
the thickness of the dynamic boundary later 6(¢) in the form
’ 1 2
Uy (§) = Ay (Kue, Pr, GNE®, 8 (8) = 4 (Ky, Pr, G)E°,
and the equation for the local Nusselt number

1
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\210 ' 525
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Gr = .= , Pr= , AT =Ty —Tw,
(v)? ¥ Pooflee A @

and the symbol <> denotes the average value of the quantity enclosed.

Equation (1) enables one to take account of the average change in density and the temperature depen-
dence of the thermophysical parameters of the gas.

Dep. 607-76, January 26, 1976,
Original article submitted September 2, 1975.

A PROBLEM IN HALF¥-SPACE COUPLING

K. V. Lakusta UDC 536.241:517.946

An analysis has already been presented [1,2] of ordinary (parabolic) temperature distributions in two
adjoining half-spaces; since heat transfer takes a wave form in rapid nonstationary processes, the true tem-
perature distributions will be described by functions that represent solutions to a system on generalized
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(hyperbolic) thermal-conduction equations [3] if one assumes that the relaxation times for the thermal stresses
are independent of direction:

2 PU | 9O o, o
P o ¢ Y af Au; = fi (x, 8) 1)
subject to the initial conditions
' a
Uily_p = i (x); —al?'\t___o = 1; (x) (2)

and the following conditions at the interface:
Ouy

{ : —— ’ i) k M
”1’x,=a"'u2!x,=u“‘a(x» )s &y ot

2
Xz=a 6x3

=g, f). (3)

xs=a

i

Here uj = uj (X;, X, X3, t) = uj(x', X3, t); A is a three-dimensional Laplace operator; bj, ei, ai, ki are real non-
negative numbers that satisfy a% = ki; ¢} = Gii; b} = ki/W%, and has the following physical meaning: kj is the
thermal conductivity, i is specific heat, yj is density, and Wry = Vki/| CiYiTrj is the rate of propagation of heat,
where Ty; 1s the relaxation time for the thermal stress (i = 1, 2). If the spaces are bounded in x' by constant
1'= ({4, 1,), the boundary conditions further become

Uilrg =0; Uil =0 (i=1, 2). (4)

Integral Fourier transformation with respect to x' and Laplace transformation with respect to t provide an
exact solution to (1)-(3); an approximate analytical solution to (1)- (4) may be constructed by the straight-line
method applied to x' and Laplace transformation applied to t. In particular, a parabolic temperature distri-
bution is obtained in one of the regions or in both simultaneously if b; —~ 0 or b, — 0, or b; — 0 and b, =0,
while pure wave distributions are obtained if ¢; =0 or ¢y — 0, or ¢; — 0 and ¢, — 0. Numerical calculations
have been performed on parabolic temperature distributions for particular bodies.
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HEAT TRANSFER IN THE INITIAL THERMAL SECTION
OF A RECTANGULAR CHANNEL WITH BOUNDARY
CONDITIONS OF THE SECOND KIND

V. L. Rvachev, A. P. Slesarenko, UDC 536.24:532.54
and V. I. Popivshchii

A laminar and hydrodynamically stabilized flow of a liquid is considered with piecewise-constant heat-
flux densities at the faces; the initial boundary-value problem takes the form

aT ol er
E”“(axﬂ*ayﬂ_ ’ (1)
oy __ a4 T 4 @)
av |, A ovip, AT
sz=o = To' (3)

The problem of (1)-(3) may be solved by using integral Laplace transformation in conjunction with the
structural method (R-function method) and Ritz's method. The structure of the solution in the image plane is
defined by

T=go—=B(D, p). 4)
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Here 50 is a certain function, while B is a certain operator, which is constructed in such a way that the func-
tion of (4) satisfies the boundary conditions of (2) exactly for any choice of ¢ from some set. This ® is chosen
by means of Ritz's variational method. Standard theorems are applied to return to the original.

Results are presented on the Nusselt number averaged over the perimeter for the initial section; the
results for the dimensionless temperature in the stabilization region are compared with the exact solution.

NOTATION

X, ¥, %, Cartesian coordinates; W, velocity distribution; v, direction of the internal normal to contour
I or Iy; g4, 9y, heat-flux densities at the faces; A, thermal conductivity; a, thermal diffusivity; Ty, constant
temperature of the liquid at the inlet; p, parameter of the integral Laplace transformation; T, Laplace trans-
form of temperature T.

Dep. 616-76, January 12, 1976.
Original article submitted June 19, 1975.

ENERGY DISTRIBUTION IN THE DEGREES
OF FREEDOM IN A CONDENSED MEDIUM

V. A. Bubnov UDC 536.711

Boltzmann used a Maxwellian velocity distribution in his molecular-kinetic interpretation of the Clapey-
ron—Mendeleev empirical equation of state, the thermal velocities of the atoms molecules being uncorrelated
in this distribution. He then assumed that the mean kinetic energy is proportional to the temperature and ob-
tained the result that half the thermal energy resided in each degree of freedom as a consequence of the statis~
tical independence of the components of the thermal velocity. The latter result is known in statistical mecha-
nics as the theorem on the equipartition of energy.

Any correlation in the components of the thermal velocity of the atoms or molecules results in a distri-
bution of the following form:
1 /Ry B  Re W , Ra ¢ R In Ris &g Res  mg )]
- R . I it = gl 5 g B 22 g 2]
f Aexp[ 2R o R o R TR o0 R 0103 R 040

Here R is a correlation determinant, while oy, 05, and o3 are standard deviations, which are proportional to
the kinetic energies in the corresponding degrees of freedom.

If the correlation is isotropic, this quadratic form can be reduced to the canonical form

1
f=4Ae 2% (5,82 + som® -+ sac?). 1)
Here the symbols are
sg=1—2n s=1-4n,s5=1-n,
pry r

Tl 14r

S _— =
0y = V-I%O', 0y = V%& 0, Og= V% o.
Formula (1) allows us to generalize the equation of state for an ideal gas as

pv =1 (r1, B)RT 2)

and to calculate the energies in the degrees of freedom:
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m
E3=—o—-92= on
-~ 3

The function § introduced here has the form

(+rm1+d~—Pf)nle®
[ —@p—Dnlll+1d+pnl"’

and this is indicated as being 6bjective because (2) describes the observations on the compressibility factor
for hydrogen over wide ranges in temperature and pressure.

P=

Dep. 615-76, February 10, 1975.
Original article submitted February 13, 1974,

TEMPERATURE DISTRIBUTION IN A CHANNEL BETWEEN
STRAIGHT LONGITUDINAL FINS PRODUCED BY BOILING
OF A LIQUID MOVING IN A CHANNEL BELOW ITS BOILING
POINT

V. K. Shcherbakov and L. V. Kovalenko UDC 536.242:536.423.1

Moving liquids below their boiling points are widely used to absorb high heat loads by boiling, which
makes it necessary to calculate the temperature distribution in the walls of a heat-exchange device with com-~
plex geometry, in particular, a surface with straight longitudinal fins.

An approximate analytical method is presented for calculating the excess temperature around the perim-
eter of a closed channel between fins, the latter being of high thermal conductivity and the temperature being
such that the liquid begins to boil.

Two characteristic cases of the propagation of bubble boiling over the perimeter occur, the exact cir-
cumstances being dependent on the heat load, the thermophysical characteristics, the dimensions of the finned
wall, and the parameters and properties of the liquid:

1) boiling starts at the axis of symmetry and extends to part of the wall between the fins;
2) boiling covers the entire wall between the fins and extends up part of the faces of the fins.

It is assumed that a fin and the wall between fins may be considered as thermophysically thin, and the
temperature distribution for these cases is determined in a one-dimensional formulation subject to the follow-
ing assumptions:

1) the heat input from the wall side is constant;

2) the maximum density of the heat flux absorbed by the channel is less than the critical value for the
working conditions;

3) the heat transfer to the contacting wall is negligible at the end of a fin;

4) the temperature gradient along the y axis in the wall between the fins has no effect on the heat flow
along the x axis;

5) the heat-transfer rate on the convective parts of the perimeter of the channel is constant and is in-
dependent of the vapor formed in the boiling parts; and

6) the heat-transfer factor is proportional to the square of the temperature difference at any point on
the surface in the bubble-boiling region.

The equations of thermal conduction for a planar wall and straight rib are solved together to define the
temperature distribution and the distribution of the heat-flux density over the perimeter, as well as the bound-~
aries to the bubble boiling.

854



The temperature distribution and the distribution of the heat flux removed by the liquid in turn allow one
to estimate the performance of the fin system under conditions of bubble boiling, and the parameters may be
varied to give the best relationship between the geometrical dimensions, and also to obtain data for calcula-
tions on the hydrodynamic characteristics of two-phase flows of variable temperature.

An example is presented of computer solution for the second case for a particular channel with specified
heat input and cooling conditions.

Dep. 611-76, January 28, 1976.
Original article submitted May 7, 1975.
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